4ADOISON

Digit:	Description:	Feature:
		PR = Packaged Rooftop
		JR = York Packaged Rooftop
1-2	Product Family	DR = Tempmaster Packaged Rooftop
		SR = Samsung Packaged Rooftop
		CR = Cultiva Packaged Rooftop
		ER= Elevate Mechanical Rooftop
		O = 100\% Outside Air
		$\mathrm{R}=$ Recirculating
		M = Mixed Outside Air
3	Application	L = Desiccant - Recirculating
		D = Desiccant -100\% Outside Air
		N = Desiccant - Mixed Outside Air
		$\mathrm{S}=$ Sensible Load DOAS
		A = Air-Cooled
		C = Water Source cooling only
4	Type	W = Water-Source Heat Pump
		H = Air-Source Heat Pump
		F = Air Handler
		$036=3$ ton
		$048=4$ ton
		$060=5$ ton
		$072=6$ ton
		$084=7$ ton
		$096=8$ ton
		$120=10$ ton
		$150=12.5$ ton
		180 $=15$ ton
		$210=17.5$ ton
		$240=20$ ton
		$300=25$ ton
5-7	Nominal Capacity	$360=30$ ton
		$420=35$ ton
		$480=40$ ton
		$540=45$ ton
		$600=50$ ton
		$660=55$ ton
		$720=60$ ton
		$780=65$ ton
		$840=70$ ton
		$960=80$ ton
		10T = 100 ton
		12T $=120$ ton
		$14 \mathrm{~T}=140$ ton
8-9	Cabinet Size	A0 = A Cab w/0 fans
		$\mathrm{BO}=\mathrm{BCab} \mathrm{w} / 0$ fans
		FO = BXL Cab w/0 fans
		$\mathrm{C0}=\mathrm{CCab}$ w/0 fans
		G0 = CXL Cab w/0 fans
		D0 = D Cab w/0 fans
		H0 = DXL Cab w/0 fans
		E0 $=$ E Cab w/O fans
		J0 = EXL Cab w/0 fans
		A1 = A Cab w/1 fan
		A2 $=$ A Cab w/2 fans
		$\mathrm{B} 1=\mathrm{B} \mathrm{Cab} \mathrm{w/1} \mathrm{fan}$
		B2 $=$ B Cab w/2 fans
		F1 = BXL Cab w/1 fan
		F2 = BXL Cab w/2 fans
		C2 $=$ C Cab w/2 fans
		C4 $=$ C Cab w/4 fans
		C6 $=$ C Cab w/6 fans
		G2 = CXL Cab w/2 fans
		G4 = CXL Cab w/4 fans
		G6 = CXL Cab w/6 fans
		D4 = D Cab w/4 fans
		D6 = D Cab w/6 fans
		D8 = D Cab w/6 O/S fans
		H4 = DXL Cab w/4 fans
		H6 = DXL Cab w/6 fans
		H8 = DXL Cab w/6 O/S fans
		$\mathrm{E4}=\mathrm{E} \mathrm{Cab} \mathrm{w} / 4$ fans
		$\mathrm{E} 6=\mathrm{ECab} \mathrm{w} / 6$ fans
		E8 = E Cab w/6 O/S fans
		J4 = EXL Cab w/4 fans
		J6 = EXL Cab w/6 fans

		J8 = EXL Cab w/6 O/S fans
		j9 = EXL Cab w/9 O/S fans
		K2 = CL Cab w/2 fans
		K4 = CL Cab w/4 fans
		K6 = CL Cab w/6 fans
		L0 $=$ CXL + Cab w/0 fans
		L2 = CXL+ Cab w/2 fans
		L4 = CXL+ Cab w/4 fans
		L6 = CXL+ Cab w/6 fans
		A = ALC, Standard Program, DOAS (App = 0)
		B = ALC, Standard Program, DOAS w/Recirc NSB (App = O)
		C = ALC, Standard Program, Recirc/Mixed air using Zone Sensors (App = R,M)
		D = ALC, Standard Program, w/ Econo., Enthalpy using Zone Sensors (App = R,M)
		$\mathrm{J}=$ Controls by others, factory mounted (App = O,R,M)
		$\mathrm{K}=$ Terminal strip, controls provided and field mtd. by others ($\mathrm{App}=0, \mathrm{R}, \mathrm{M}$)
10	Controls	$\mathrm{N}=$ ALC, Standard Program, w/ Econo., Sensible using Zone Sensors (App = R,M)
		Q = ALC, Standard Program, Recirc Or Mixed air CTRL VIA Mixed Air Sensors (App=M)
		R = ALC, Standard Program, w/ Econo., Enthalpy CTRL VIA Mixed Air Sensors (App=M)
		S = ALC, Standard Program, w/Econo., Sensible CTRL VIA Mixed Air Sensors (App=M)
		T = ALC, Standard Program, Recirc/Mixed air CTRL VIA Return Air Sensors (App=M)
		U = ALC, Standard Program, w/ Econo., Enthalpy CTRL VIA Return Air Sensors (App=M)
		V = ALC, Standard Program, w/ Econo., Sensible CTRL VIA Return Air Sensors (App=M)
		2 = 208/3/60
11	Unit Voltage	3 = 230/3/60
11	Unit Voltage	$4=460 / 3 / 60$
		5 = 575/3/60
12	Model Vintage	D
		A = Vertical supply and vertical return
		B = Horizontal supply and vertical return
		C = Vertical supply and side return
		$\mathrm{D}=$ Horizontal supply and side return
13	Airflow Orentation	$\mathrm{E}=$ Vertical supply and no return
		F = Horizontal supply and no return
		G = Horizontal side supply and side return
		$\mathrm{H}=$ Horizontal side supply and no return
		$\mathrm{J}=$ Top supply and side return (E Cab Only)
		$\mathrm{AH}=22^{\prime \prime} \mathrm{DD}$, Airfoil
		AJ = 25" DD, Airfoil
		$B A=10^{\prime \prime} \mathrm{DD}, \mathrm{BI}$
		BB = 11" DD, BI
		BC $=12^{\prime \prime} \mathrm{DD}, \mathrm{Bl}$
		BD $=14^{\prime \prime}$ DD, BI
		BE = 16" DD, BI
		BF $=18^{\prime \prime} \mathrm{DD}, \mathrm{BI}$
		BG = 20" DD, BI
		BH = 22" DD, BI
		BJ $=25^{\prime \prime} \mathrm{DD}, \mathrm{BI}$
		CA $=280 \mathrm{~mm}$ S Single ECM
		CR $=355 \mathrm{~mm}$ Single ECM
		CM $=450 \mathrm{~mm}$ Single ECM
		C2 = EC 350
		C3 = EC 450 (Low) 460V Only
		$\mathrm{C} 4=\mathrm{EC} 450$ (Hi)
14-15	Supply Blower Size/Type	C5=EC 500 (Low)
14-15	Supply Blower Size/Type	C6 = EC 500 (Hi) (460 V only)
		C7 = EC $560208,230 \mathrm{~V}$ only
		DA $=280 \mathrm{~mm}$ Dual ECM
		DK $=355 \mathrm{~mm}$ Dual ECM
		D1 = Dual EC 350
		D2 = Dual EC 450(Low) 460V Only
		D3 = Dual EC 450(HI)
		D4 = Dual EC 500(Low)
		D5 = Dual EC 560 (208,230V only)
		D6 = Dual EC 500(Hi) (460V only)
		EA = Dual 14" DD, BI
		EB = Dual 14" DD, AF
		EC = Dual 16" DD, BI
		ED = Dual 16" DD, AF
		EE = Dual 18" DD, BI
		EF = Dual 18" DD, AF
		EG = Dual 20" DD, BI
		EH = Dual 20" DD, AF
		$0=$ None
		C = Air Monitoring Station CAV only
		A = Rubber Isolation
16		B = Spring Isolation
16	Supply Blower Options	F = Rigid Mount
		D = Rubber Isolation + Air Monitoring Station CAV only
		$\mathrm{E}=$ Spring Isolation + Air Monitoring Station CAV only
		G = Rigid Mount + Air Monitoring Station CAV only

17	Supply Motor HP	$\mathrm{A}=1 \mathrm{HP}$
		$\mathrm{B}=1.5 \mathrm{HP}$
		$\mathrm{C}=2 \mathrm{HP}$
		$\mathrm{D}=3 \mathrm{HP}$
		$\mathrm{E}=5 \mathrm{HP}$
		$\mathrm{F}=7.5 \mathrm{HP}$
		$\mathrm{G}=10 \mathrm{HP}$
		$\mathrm{H}=15 \mathrm{HP} 4$ Pole
		$\mathrm{J}=20 \mathrm{HP}$
		K=15 HP 2 Pole
		M = ECM
18	Supply Motor Type	1 = High efficiency ODP with VFD (CAV)
		2 = High efficiency TEFC with VFD (CAV)
		3 = ECM (CAV)
		4 = High efficiency ODP with VFD CTRL VIA Supply Duct DPT
		5 = High efficiency TEFC with VFD CTRL VIA Supply Duct DPT
		6 = ECM CTRL VIA Supply Duct DPT
		8 = High efficiency ODP with VFD CTRL VIA Zone DPT
		9 = High efficiency TEFC with VFD CTRL VIA Zone DPT
		A = ECM CTRL VIA Zone DPT
		B = High efficiency ODP with VFD SINGLE ZONE (VAV) CTRL
		C = High efficiency TEFC with VFD SINGLE ZONE (VAV) CTRL
		D = ECM SINGLE ZONE (VAV) CTRL
		E = High efficiency ODP with VFD CTRL VIA CO2
		F = High efficiency TEFC with VFD CTRL VIA CO2
		G = ECM CTRL VIA CO2
19	Cooling Coil	0 = None
		B $=6$ row Copper Tube Aluminum Fin DX Coil
		D $=6$ row Copper Tube Aluminum Fin Chilled Water Coil
		$\mathrm{E}=6$ row Copper Tube Aluminum Fin DX Coil with field wired PCO filter rack w/ door interlock switches
		F = 6 row Copper Tube Aluminum Fin DX Coil with factory wired PCO filter rack w/ door interlock switches
		G = 6 row Copper Tube Aluminum Fin DX Coil with factory wired UV Lights w/ door interlock switches
		H = 6 row Copper Tube Aluminum Fin Chilled Water Coil with factory wired UV Lights w/ door interlock switches
20	Compressor Type	0 = None
		6 = Dual Scroll/Dual Circuit with lead Circuit VFD
		7 = Dual Scroll/Dual Circuit with Dual Circuit VFD
		$8=$ Single Scrol//Single Circuit with lead Circuit VFD
21	MCA	1=0-30
		2 $=30.1-60$
		3=60.1-100
		$4=100.1-200$
		$5=200.1-400$
		$6=400+$
22-23	Refrigeration Controls/Options	$00=$ None
		AK= Hot Gas Reheat, Modulating (Single Circuit)
		AL= Hot Gas Reheat, Modulating (Dual Cirruit)
		AP= Hot Gas Reheat, Modulating (Dual Circuit) 2 Row - Cultiva Only
		AM= Liquid Sub Cooling, Switchable, All Circuits
		AQ= Low Ambient Cooling
		AR= Electronic Hot Gas Bypass Frost Shield (PR*H Only)
		DE $=\mathrm{AK}+\mathrm{AM}$
		$\mathrm{GA}=\mathrm{AK}+\mathrm{AR}$
		$\mathrm{GB}=\mathrm{AL}+\mathrm{AR}$
		GC $=$ AM + AR
		$G D=A K+A M+A R$
24	Heating Type	$0=$ None
		$\mathrm{A}=$ Electric Heat
		B $=$ Natural Gas Heat
		D = LP Gas Heat
		F = Hot Water Heat
		G = Elec Preheat - * Includes Extended Cab
		$\mathrm{H}=\mathrm{B}+\mathrm{G}$
		$\mathrm{J}=\mathrm{D}+\mathrm{G}$
		K $=$ F+G
25	Electric Heating Capacity	$0=$ None
		A = 5 KW 240/480/575V-3.75 KW 208V
		B = $10 \mathrm{KW} 240 / 480 / 575 \mathrm{~V}-7.5 \mathrm{KW} 208 \mathrm{~V}$
		C= $15 \mathrm{KW} 240 / 480 / 575 \mathrm{~V}-11.25 \mathrm{KW} 208 \mathrm{~V}$
		D $=20 \mathrm{KW} 240 / 480 / 575 \mathrm{~V}-15 \mathrm{KW} 208 \mathrm{~V}$
		$\mathrm{E}=25 \mathrm{KW} 240 / 480 / 575 \mathrm{~V}-18.75 \mathrm{KW} 208 \mathrm{~V}$
		F $=30 \mathrm{KW} 240 / 480 / 575 \mathrm{~V}-22.5 \mathrm{KW} 208 \mathrm{~V}$
		G = 35 KW 240/480/575V-26.25 KW 208V
		H $=40 \mathrm{KW} 240 / 480 / 575 \mathrm{~V}-30 \mathrm{KW} 208 \mathrm{~V}$
		$\mathrm{K}=50 \mathrm{KW} 240 / 480 / 575 \mathrm{~V}-37.5 \mathrm{KW} 208 \mathrm{~V}$
		M = 60 KW 240/480/575V-45 KW 208V
		$\mathrm{N}=70 \mathrm{KW} 240 / 480 / 575 \mathrm{~V}-52.5 \mathrm{KW} 208 \mathrm{~V}$
		$\mathrm{P}=80 \mathrm{KW} 240 / 480 / 575 \mathrm{~V}-60 \mathrm{KW} 208 \mathrm{~V}$
		R=100 KW 240/480/575V-75 KW 208V
		S = $110 \mathrm{KW} 240 / 480 / 575 \mathrm{~V}-81.4 \mathrm{KW} 208 \mathrm{~V}$

32	Ventilation	A = Hood \& Birdscreen without Damper
		C = Motorized 2-Position OA Damper (Class 1 Rated) with 2-Position Actuator (ALC, Field DDC, EM)
		D = Motorized Proportional OA Damper (Class 1 Rated) with 0-10Vdc Actuators (ALC, Field DDC)
		$\mathrm{E}=$ Motorized 2-Position OA \& RA Dampers (Class 1 Rated) with 2-Position Actuators (ALC, Field DDC)
		F = Modulating OA \& RA Dampers (Class 1 Rated) with 0-10Vdc Actuators
		$\mathrm{J}=$ Modulating OA \& RA Dampers (Class 1 Rated) with 0-10Vdc Actuators Zone DPT CTRL
		L = Modulating OA \& RA Dampers (Class 1 Rated) with 0-10Vdc Actuators CO2 CTRL
		K = Motorized Proportional OA Damper (Class 1 Rated) with 0-10Vdc Actuators (ALC, Field DDC) CO2 CTRL
		M = Motorized Proportional OA Damper (Class 1 Rated) with 0-10Vdc Actuators (ALC, Field DDC) Zone DPT CTRL
		$\mathrm{N}=$ Motorized Proportional OA Damper (Class 1 Rated) with 0-10Vdc Actuators (ALC, Field DDC) (Plate Heat EX)
		$\mathrm{P}=$ Modulating OA \& RA Dampers (Class 1 Rated) with 0-10Vdc Actuators (Plate Heat EX)
33-34	Exhaust Blower Size/Type	00 = None
		AC = 12" DD, Airfoil
		AD = 14" DD, Airfoil
		AE $=16^{\prime \prime}$ DD, Airfoil
		AF = 18" DD, Airfoil
		AG = 20" DD, Airfoil
		AH = 22" DD, Airfoil
		AJ = 25" DD, Airfoil
		$B A=10^{\prime \prime} \mathrm{DD}, \mathrm{BI}$
		$B \mathrm{BB}=11^{\prime \prime} \mathrm{DD}, \mathrm{BI}$
		$\mathrm{BC}=12^{\prime \prime} \mathrm{DD}, \mathrm{BI}$
		BD $=14^{\prime \prime}$ DD, BI
		BE $=16^{\prime \prime}$ DD, BI
		BF = 18" DD, BI
		BG = 20" DD, BI
		BH = 22" DD, BI
		BJ = 25" DD, BI
		CA = ECM 280 mm
		CR $=$ ECM 355 mm
		CM $=$ ECM 450 mm
		C2 = ECM 350
		C3 = ECM 450 (Low) 460V Only
		C4 = ECM 450 (Hi)
		C5= ECM 500 (Low)
		C6 = ECM 500 (Hi) (460V only)
		C7 = ECM 560 (208,230V only)
		DA = ECM Dual 280 mm
		DK = ECM Dual 355 mm
		DL = ECM Dual 450mm
		D1 = ECM Dual 350
		D2 = ECM Dual 450(Low) (460V Only)
		D3 = ECM Dual 450(HI)
		D4 = ECM Dual 500(Low)
		D6 = ECM Dual 500(Hi) (460V only)
		EA = Dual 14" DD, BI
		EB = Dual 14" DD, AF
		EC = Dual 16" DD, BI
		ED= Dual 16" DD, AF
		EE = Dual 18" DD, BI
		EF = Dual 18" DD, AF
		EG = Dual 20" DD, BI
		EH = Dual 20" DD, AF
35	Exhaust Blower Options	0 = None No Exhaust
		D = Gravity Relief Damper (No Exhaust Fan only)
		E = Actuator Damper (No Exhaust Fan only)
		H = Gravity Relief Damper + Air Monitoring Station CAV only
		L = Actuator Damper + Air Monitoring Station CAV only
		F = Gravity Relief Damper + Rubber Isolation
		$\mathrm{J}=$ Actuator Damper + Rubber Isolation
		M = Gravity Relief Damper + Rubber Isolation + Air Monitoring Station CAV only
		N = Actuator Damper + Rubber Isolation + Air Monitoring Station CAV only
		G = Gravity Relief Damper+ Spring Isolation
		K = Actuator Damper + Spring Isolation
		$\mathrm{P}=$ Gravity Relief Damper + Spring Isolation + Air Monitoring Station CAV only
		Q = Actuator Damper + Spring Isolation + Air Monitoring Station CAV only
		T = Gravity Relief Damper + Rigid Mount
		U = Actuator Damper + Rigid Mount
		V = Gravity Relief Damper + Rigid Mount + Air Monitoring Station CAV only
		W = Actuator Damper + Rigid Mount + Air Monitoring Station CAV only
36	Exhaust Motor HP	0 = None
		$\mathrm{A}=1.0 \mathrm{HP}$
		$\mathrm{B}=1.5 \mathrm{HP}$
		$\mathrm{C}=2.0 \mathrm{HP}$
		$\mathrm{D}=3.0 \mathrm{HP}$
		$\mathrm{E}=5.0 \mathrm{HP}$
		$\mathrm{F}=7.5 \mathrm{HP}$
		$\mathrm{G}=10 \mathrm{HP}$
		$\mathrm{H}=15 \mathrm{HP}$
		$\mathrm{M}=\mathrm{ECM}$
		0 = None

		1 = High efficiency ODP with VFD (CAV)
		2 = High efficiency TEFC with VFD (CAV)
		3 = ECM (CAV)
		4 = High efficiency ODP with VFD and Zone DPT (VAV)
		5 = High efficiency TEFC with VFD and Zone DPT (VAV)
37	Exhaust Motor Type	6 = ECM and Zone DPT (ALC Only) (VAV)
		7 = High efficiency ODP with VFD and Exhaust Duct DPT (VAV)
		8 = High efficiency TEFC with VFD and Exhaust Duct DPT (VAV)
		9 = ECM and Exhaust Duct DPT (ALC Only) (VAV)
		A = High efficiency ODP with VFD and Supply Fan Tracking (VAV)
		B = High efficiency TEFC with VFD and Supply Fan Tracking (VAV)
		C = ECM and Supply Fan Tracking (ALC Only) (VAV)
		00 = None
		A1 = Corrosion Protection Coating- Cabinet
		F1 = Corrosion Protection Coating- Condenser Coil
		G1 = Cupronickel Water Coil
		H1 = Corrosion Protection Coating- Indoor Coils
38-39	Corrosion Protection	AE $=$ A1+F1
		AF = A1+G1
		AR = A1+ H 1
		AS $=\mathrm{F} 1+\mathrm{H} 1$
		AT $=\mathrm{G} 1+\mathrm{H} 1$
		BS $=\mathrm{A} 1+\mathrm{F} 1+\mathrm{H} 1$
		$\mathrm{BT}=\mathrm{A} 1+\mathrm{G} 1+\mathrm{H} 1$
		$00=$ None
		A1 $=115 \mathrm{v}$ Convenience Outlet (Field Wired)
		B1 = 115v Convenience Outlet (Factory Wired)
		C1 = Magnehelic Gauge (One) By Rule
		E1 = Magnehelic Gauge (Three) By Rule
		F1 = Clogged Filter Indicator
		G1 = Condensate Overflow Switch
		AA $=\mathrm{A} 1+\mathrm{C} 1$
		$\mathrm{AC}=\mathrm{A} 1+\mathrm{E} 1$
		AD $=$ A1+F1
		AE $=$ A1+G1
		BA $=$ B1+C1
		$\mathrm{BC}=\mathrm{B1}+\mathrm{E} 1$
		BD $=$ B1+F1
		$\mathrm{BE}=\mathrm{B} 1+\mathrm{G} 1$
		CA $=$ C1+F1
		CB $=$ C1+G1
40-41	Maintenance Options	EB $=$ E1+F1
		EA $=\mathrm{E} 1+\mathrm{G} 1$
		FA $=$ F1+G1
		$\mathrm{JA}=\mathrm{A} 1+\mathrm{C} 1+\mathrm{F} 1$
		$\mathrm{JB}=\mathrm{A} 1+\mathrm{C} 1+\mathrm{G} 1$
		$\mathrm{JJ}=\mathrm{A} 1+\mathrm{E} 1+\mathrm{F} 1$
		JK = A1+E1+G1
		$\mathrm{JL}=\mathrm{A} 1+\mathrm{F} 1+\mathrm{G} 1$
		KA $=$ B1+C1+F1
		KB $=$ B1+C1+G1
		$\mathrm{KJ}=\mathrm{B} 1+\mathrm{E} 1+\mathrm{F} 1$
		KK = B1+E1+G1
		KL = B1+F1+G1
		LA = C1+F1+G1
		RA $=\mathrm{A} 1+\mathrm{C} 1+\mathrm{F} 1+\mathrm{G} 1$
		RN $=\mathrm{A} 1+\mathrm{E} 1+\mathrm{F} 1+\mathrm{G} 1$
		SA $=\mathrm{B} 1+\mathrm{C} 1+\mathrm{F} 1+\mathrm{G} 1$
		SN = B1+E1+F1+G1
42	MOCP	$\mathrm{A}=15 \mathrm{Amps}$
		$\mathrm{B}=20 \mathrm{Amps}$
		$\mathrm{C}=25 \mathrm{Amps}$
		D $=30 \mathrm{Amps}$
		$\mathrm{E}=35 \mathrm{Amps}$
		F= 40 Amps
		$\mathrm{G}=45 \mathrm{Amps}$
		H = 50 Amps
		$\mathrm{J}=60 \mathrm{Amps}$
		$\mathrm{K}=70 \mathrm{Amps}$
		L= 80 Amps
		M $=90 \mathrm{Amps}$
		$\mathrm{N}=100 \mathrm{Amps}$
		$\mathrm{P}=110 \mathrm{Amps}$
		$\mathrm{Q}=125 \mathrm{Amps}$
		$\mathrm{R}=150 \mathrm{Amps}$
		S = 175 Amps
		$\mathrm{T}=200 \mathrm{Amps}$
		$\mathrm{U}=225 \mathrm{Amps}$
		$\mathrm{V}=250 \mathrm{Amps}$
		$\mathrm{W}=300 \mathrm{Amps}$

		$\mathrm{Y}=350 \mathrm{Amps}$
		$\mathrm{Z}=400 \mathrm{Amps}$
		$1=400+$ Amps
		$0=$ None
43	Disconnect Type	1 = Nonfused
	Disconnect Type	2 = Fused
		3 = Fused with 65k SCCR
		$00=$ None
44-45	Control Options	AA = Exhaust Fan Interlock
44-45	ControtOptions	AB = Energy Management Relay
		$B A=A A+A B$
		$00=$ None
		A = High Temperature Alarm (Firestat)
		AB = Factory-Installed Smoke Detector
46-47	Safety Controls	AE = Carbon Dioxide (CO2) Detector
46	Safety Controls	$B A=A A+A B$
		$B D=A A+A E$
		$B G=A B+A E$
		$C C=A A+A B+A E$
		A = 2" MERV8 Pleated
		B = 4" MERV8 Pleated
		C = 4" MERV11 Pleated
		D = 4" MERV13 Pleated
		E = 4" MERV8 Pleated with 2" MERV8 Pleated
		F = 4" MERV11 Pleated with 2" MERV8 Pleated
48	Pre-Filter	G = 4" MERV13 Pleated with 2" MERV8 Pleated
48		M = A $+2^{\prime \prime}$ Metal Mesh Hood Mounted
		N = B+2" Metal Mesh Hood Mounted
		$\mathrm{P}=\mathrm{C}+2^{\prime \prime}$ Metal Mesh Hood Mounted
		Q = D+2" Metal Mesh Hood Mounted
		R = E +2" Metal Mesh Hood Mounted
		S $=\mathrm{F}+2^{\prime \prime}$ Metal Mesh Hood Mounted
		T = G $+2^{\prime \prime}$ Metal Mesh Hood Mounted
		$0=$ None
		1 = Target
		2 = H-E-B
		3 = Cultiva
		4 = Carrier
49	Applied Specials	5 = Weis
		6 = Trader Joe's
		7 = N/A, ALDI - PR ${ }^{\text {K }}$ K
		$8=$ Whole Foods
		9 = Sprouts
		X = Applied Special
		$00=$ None
		AA = Equipment Touch 24.3 " (Ship With)
		AB $=$ ZS "Standard" Zone Sensor
		AC = ZS "Standard" Zone Sensor With Humidity
		AD = ZS "Standard" Zone Sensor With CO2
		AE = ZS "Standard" Zone Sensor With Humidity and CO2
		AF = ZS "Plus" Zone Sensor
		AG = ZS "Plus" Zone Sensor With Humidity
		AH = ZS "Plus" Zone Sensor With CO2
		AJ = ZS "Plus" Zone Sensor With Humidity and CO2
		AK = ZS "Pro" Zone Sensor
		AL = ZS "Pro" Zone Sensor With Humidity
		AM = ZS "Pro" Zone Sensor With CO2
		AN = ZS "Pro" Zone Sensor With Humidity and CO2
		AP = Smoke Detector
		AQ = Equipment Touch 27 " (Ship With)
		AR = Equipment Touch 2 10" (Ship With)
		$B A=A A+A B$
		$B B=A A+A C$
		$B C=A A+A D$
		$B D=A A+A E$
		$B E=A A+A F$
		$B F=A A+A G$
		$B G=A A+A H$
		$B H=A A+A J$
		BJ $=\mathrm{AA}+\mathrm{AK}$
		BK $=A A+A L$
		$B L=A A+A M$
		$B M=A A+A N$
		$B N=A A+A P$
		$C A=A A+A P$
		$C B=A B+A P$
		$\mathrm{CC}=\mathrm{AC}+\mathrm{AP}$
		CD $=A D+A P$
		$C E=A E+A P$
		CF $=A F+A P$

52-53	PR Roof Curbs	BE = B Cab Roof Curb 14" with 4 Cond fan With Exhaust
		BF = B Cab Roof Curb 14" Wtr Source With Exhaust
		BG = B Cab Roof Curb 14" Air Handler No Exhaust
		BH = B Cab Roof Curb 14" with 1 Cond fan No Exhaust
		BI = B Cab Roof Curb 14" with 2 Cond fan No Exhaust
		BJ = B Cab Roof Curb 14" with 3 Cond fan No Exhaust
		BK = B Cab Roof Curb 14" with 4 Cond fan No Exhaust
		BL = B Cab Roof Curb 14" Wtr Source No Exhaust
		FA = BXL Cab Roof Curb 14" Air Handler With Exhaust
		FB = BXL Cab Roof Curb 14" with 1 Cond fan With Exhaust
		FC = BXL Cab Roof Curb 14" with 2 Cond fan With Exhaust
		FD = BXL Cab Roof Curb 14" with 3 Cond fan With Exhaust
		FE = BXL Cab Roof Curb 14" with 4 Cond fan With Exhaust
		FF = BXL Cab Roof Curb 14" Wtr Source With Exhaust
		FG = BXL Cab Roof Curb 14" Air Handler No Exhaust
		FH = BXL Cab Roof Curb 14" with 1 Cond fan No Exhaust
		FI = BXL Cab Roof Curb 14" with 2 Cond fan No Exhaust
		FJ = BXL Cab Roof Curb 14" with 3 Cond fan No Exhaust
		FK = BXL Cab Roof Curb 14" with 4 Cond fan No Exhaust
		FL = BXL Cab Roof Curb 14" Wtr Source No Exhaust
		CA = C Cab Roof Curb 14" Air Handler With Exhaust
		CB = C Cab Roof Curb 14" with 2 Cond fan With Exhaust
		CC = C Cab Roof Curb 14" with 3 Cond fan With Exhaust
		CD = C Cab Roof Curb 14" with 4 Cond fan With Exhaust
		CE = C Cab Roof Curb 14" with 6 Cond fan With Exhaust
		CF = C Cab Roof Curb 14" Wtr Source With Exhaust
		CG = C Cab Roof Curb 14" Air Handler No Exhaust
		CH = C Cab Roof Curb 14" with 2 Cond fan No Exhaust
		Cl = C Cab Roof Curb 14" with 3 Cond fan No Exhaust
		CJ = C Cab Roof Curb 14" with 4 Cond fan No Exhaust
		CK = C Cab Roof Curb 14" with 6 Cond fan No Exhaust
		CL = C Cab Roof Curb 14" Wtr Source No Exhaust
		GA = CXL Cab Roof Curb 14" Air Handler With Exhaust
		GB = CXL Cab Roof Curb 14" with 2 Cond fan With Exhaust
		GC = CXL Cab Roof Curb 14" with 3 Cond fan With Exhaust
		GD = CXL Cab Roof Curb 14" with 4 Cond fan With Exhaust
		GE = CXL Cab Roof Curb 14" with 6 Cond fan With Exhaust
		GF = CXL Cab Roof Curb 14" Wtr Source With Exhaust
		GG = CXL Cab Roof Curb 14" Air Handler No Exhaust
		GH = CXL Cab Roof Curb 14" with 2 Cond fan No Exhaust
		GI = CXL Cab Roof Curb 14" with 3 Cond fan No Exhaust
		GJ = CXL Cab Roof Curb 14" with 4 Cond fan No Exhaust
		GK = CXL Cab Roof Curb 14" with 6 Cond fan No Exhaust
		GL = CXL Cab Roof Curb 14" Wtr Source No Exhaust
		DA = D Cab Roof Curb 14" Air Handler With Exhaust
		DB = D Cab Roof Curb 14"with 4 Cond fan With Exhaust
		DC = D Cab Roof Curb 14"with 6 Cond fan With Exhaust
		DD = D Cab Roof Curb 14"with 6 Oversized \& 9 Cond fans With Exhaust
		DE = D Cab Roof Curb 14" Wtr Source With Exhaust
		DF = D Cab Roof Curb 14" Air Handler No Exhaust
		DG = D Cab Roof Curb 14"with 4 Cond fan No Exhaust
		DH = D Cab Roof Curb 14"with 6 Cond fan No Exhaust
		DI = D Cab Roof Curb 14"with 6 Oversized \& 9 Cond fans No Exhaust
		DJ = D Cab Roof Curb 14" Wtr Source No Exhaust
		HA = DXL Cab Roof Curb 14"Air Handler With Exhaust
		HB = DXL Cab Roof Curb 14" with 4 Cond fan With Exhaust
		HC = DXL Cab Roof Curb 14" with 6 Cond fan With Exhaust
		HD = DXL Cab Roof Curb 14" with 6 Oversized \& 9 Cond fans With Exhaust
		HE = DXL Cab Roof Curb 14",Wtr Source With Exhaust
		HF = DXL Cab Roof Curb 14"Air Handler No Exhaust
		HG = DXL Cab Roof Curb 14" with 4 Cond fan No Exhaust
		HH = DXL Cab Roof Curb 14" with 6 Cond fan No Exhaust
		HI = DXL Cab Roof Curb 14" with 6 Oversized \& 9 Cond fans No Exhaust
		HJ = DXL Cab Roof Curb 14",Wtr Source No Exhaust
		EA = E Cab Roof Curb 14" Air Handler With Exhaust
		EB = E Cab Roof Curb 14" with 4 Cond fan With Exhaust
		EC = E Cab Roof Curb 14"with 6 Cond fan With Exhaust
		ED = E Cab Roof Curb 14" with 6 Oversized \& 9 Cond fans With Exhaust
		EE = E Cab Roof Curb 14" , Wtr Source With Exhaust
		EF = E Cab Roof Curb 14" Air Handler No Exhaust
		EG = E Cab Roof Curb 14" with 4 Cond fan No Exhaust
		EH = E Cab Roof Curb 14"with 6 Cond fan No Exhaust
		EI = E Cab Roof Curb 14" with 6 Oversized \& 9 Cond fans No Exhaust
		EJ = E Cab Roof Curb 14" , Wtr Source No Exhaust
		JA = EXL Cab Roof Curb 14" Air Handler With Exhaust
		JB = EXL Cab Roof Curb 14" with 4 Cond fan With Exhaust
		JC = EXL Cab Roof Curb 14" with 6 Cond fan With Exhaust
		JD = EXL Cab Roof Curb 14" with 6 Oversized \& 9 Cond fans With Exhaust
		JE = EXL Cab Roof Curb 14" , Wtr Source With Exhaust
		JF = EXL Cab Roof Curb 14" Air Handler No Exhaust
		JG = EXL Cab Roof Curb 14" with 4 Cond fan No Exhaust

